Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.689
Filtrar
1.
Arch Microbiol ; 206(5): 222, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642140

RESUMO

Animal feed is vulnerable to fungal infections, and the use of bio-preserving probiotics has received increasing attention. In contrast to Lactobacillus and Bifidobacteria spp., fewer Bacillus spp. have been recognized as antifungal probiotics. Therefore, our objective was to screen antifungal strains and provide more Bacillus candidates to bridge this gap. Here, we screened 56 bacterial strains for cyclic lipopeptide genes and conducted an antifungal assay with Aspergillus niger as a representative fungus. We found that a Bacillus strain Bacillus amyloliquefaciens PM415, isolated from pigeon manure, exhibited the highest fungal inhibition activity as demonstrated by the confrontation assay and morphological observation under scanning electron microscope (SEM). Preliminary safety assessment and probiotic characterization revealed its non-pathogenic feature and stress tolerance capability. Whole genome sequencing of Bacillus amyloliquefaciens PM415 revealed a genome size of 4.16 Mbp and 84 housekeeping genes thereof were used for phylogenetic analysis showing that it is most closely related to Bacillus amyloliquefaciens LFB112. The in silico analysis further supported its non-pathogenic feature at the genomic level and revealed potential biosynthetic gene clusters responsible for its antifungal property. RNA-seq analysis revealed genome-wide changes in transportation, amino acid metabolism, non-ribosomal peptides (NRPs) biosynthesis and glycan degradation during fungal antagonism. Our results suggest that Bacillus amyloliquefaciens PM415 is a safe and effective probiotic strain that can prevent fungal growth in animal feeds.


Assuntos
Bacillus amyloliquefaciens , Bacillus , Probióticos , Animais , Bacillus amyloliquefaciens/química , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Filogenia
2.
J Inflamm Res ; 17: 2299-2308, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645879

RESUMO

Background: Since there is no clear priority or selection principle in the guidelines for myasthenia crisis, therapeutic plasma exchange (TPE) and intravenous immunoglobulin are often administered randomly. However, it should be more prudent in taking TPE due to its higher cost and risk. Studying its early response factors is crucial for managing myasthenia crisis and can improve medical and economic benefits. Methods: A prospective observational study was conducted, and patients classified as having "impending myasthenia crisis" or experiencing a myasthenia crisis and treated by TPE were included. The primary endpoint was the response after TPE. Univariate logistic regression analysis and repeated measurement were performed to analyze factors related to TPE efficacy. Results: A total of 30 patients who treated with TPE as their fast-acting treatments were enrolled. After TPE, those whose QMGs and/or MGCs decreased by ≥5 points or ≥30% of the baseline were judged as "response group", accounting for 66.67% (20/30). Respiratory symptoms had a response rate of 72.00% (18/25), showing the most remarkable improvement. Meanwhile, extraocular symptoms were the least sensitive, with only 8.00% (2/25) showing efficacy. Thymoma (100.00% vs 50.00%, P=0.002) and a high concentration of AChR-Ab (37.37 nmol/L vs 25.4 nmol/L, P=0.039) were common in the early response group. Repeated measures showed significant changes in AChR-Ab and CD19+ B cells before and after TPE (all with P < 0.05). After treatment, the CD19+ B cells tended to decrease in the response group. Discussion: These results indicated that, for AChR-Ab positive generalized MG, TPE can quickly improve respiratory symptoms. Thymoma and a high concentration of AChR-Ab before TPE predict an early better response. Additionally, TPE may work by decreasing AChR-Ab levels and inducing immune regulation. Future prospective and randomized controlled studies are needed.

4.
Curr Med Sci ; 44(2): 298-308, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619682

RESUMO

OBJECTIVE: In B-cell acute lymphoblastic leukemia (B-ALL), current intensive chemotherapies for adult patients fail to achieve durable responses in more than 50% of cases, underscoring the urgent need for new therapeutic regimens for this patient population. The present study aimed to determine whether HZX-02-059, a novel dual-target inhibitor targeting both phosphatidylinositol-3-phosphate 5-kinase (PIKfyve) and tubulin, is lethal to B-ALL cells and is a potential therapeutic for B-ALL patients. METHODS: Cell proliferation, vacuolization, apoptosis, cell cycle, and in-vivo tumor growth were evaluated. In addition, Genome-wide RNA-sequencing studies were conducted to elucidate the mechanisms of action underlying the anti-leukemia activity of HZX-02-059 in B-ALL. RESULTS: HZX-02-059 was found to inhibit cell proliferation, induce vacuolization, promote apoptosis, block the cell cycle, and reduce in-vivo tumor growth. Downregulation of the p53 pathway and suppression of the phosphoinositide 3-kinase (PI3K)/AKT pathway and the downstream transcription factors c-Myc and NF-κB were responsible for these observations. CONCLUSION: Overall, these findings suggest that HZX-02-059 is a promising agent for the treatment of B-ALL patients resistant to conventional therapies.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/uso terapêutico , Moduladores de Tubulina/uso terapêutico , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proliferação de Células , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico
5.
Artigo em Inglês | MEDLINE | ID: mdl-38568304

RESUMO

The transformation of photogenerated charge carriers (PC) in variable dimensional photocatalyst plays a pivotal role in unraveling the generation of reactive species (RS). However, the dimensional structure-activity relationship in photocatalysis remains elusive, with limited insights into its intricacies. Herein, we report a controlled synthesis strategy by using polyvinyl pyrrolidone (PVP)-assisted precipitation method for BiOI photocatalyst. Due to the steric hindrance of PVP, the 3D microsphere (3D-PVP0.5) and porous structure (3D-PVP1) of BiOI catalysts have been successfully prepared at room temperature. The 3D-PVP1 photocatalyst contains abundant mesopores and larger pores, which significantly shorten the diffusion distance of PC. Also, these PC in porous structure is beneficial for transferring from the inner phase to the surface of materials. Combined with optical property and radicals trapping experiments, the recombination rate of PC in porous structure performs a significant decrease, leading to the generation of more dominated ROS (•O2- and h+). The •O2- played a dominated role (86.98% of contribution rate) in photodegradation of tetracycline (TC) in 3D-PVP1 photocatalytic process. Compared with 2D nanosheet of BiOI (16.7% removal rate of TC), the as-prepared 3D porous structure of BiOI catalyst exhibits unique stable and high removal capacities (90.5%) for TC photodegradation under visible light irradiation. The kobs of 3D-PVP1 photocatalyst increased by 5.1 times than that of 2D nanosheet. To investigate its practical application, the effects of inorganic anions and pH have been systematically studied. This work sheds light on the design of variable dimension BiOI catalyst and provides more insight into the transfer mechanism of PC.

6.
ACS Nano ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659192

RESUMO

As essential primary producers, cyanobacteria play a major role in global carbon and nitrogen cycles. Though the influence of nanoplastics on the carbon metabolism of cyanobacteria is well-studied, little is known about how nanoplastics affect their nitrogen metabolism, especially under environmentally relevant nitrogen concentrations. Here, we show that nitrogen forms regulated growth inhibition, nitrogen consumption, and the synthesis and release of microcystin (MC) in Microcystis aeruginosa exposed to 10 µg/mL amino-modified polystyrene nanoplastics (PS-NH2) with a particle size of 50 nm under environmentally relevant nitrogen concentrations of nitrate, ammonium, and urea. We demonstrate that PS-NH2 inhibit M. aeruginosa differently in nitrate, urea, and ammonium, with inhibition rates of 51.87, 39.70, and 36.69%, respectively. It is caused through the differences in impairing cell membrane integrity, disrupting redox homeostasis, and varying nitrogen transport pathways under different nitrogen forms. M. aeruginosa respond to exposure of PS-NH2 by utilizing additional nitrogen to boost the production of amino acids, thereby enhancing the synthesis of MC, extracellular polymeric substances, and membrane phospholipids. Our results found that the threat of nanoplastics on primary producers can be regulated by the nitrogen forms in freshwater ecosystems, contributing to a better understanding of nanoplastic risks under environmentally relevant conditions.

7.
Appl Microbiol Biotechnol ; 108(1): 293, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592508

RESUMO

Kluyveromyces marxianus has become an attractive non-conventional yeast cell factory due to its advantageous properties such as high thermal tolerance and rapid growth. Succinic acid (SA) is an important platform molecule that has been applied in various industries such as food, material, cosmetics, and pharmaceuticals. SA bioproduction may be compromised by its toxicity. Besides, metabolite-responsive promoters are known to be important for dynamic control of gene transcription. Therefore, studies on global gene transcription under various SA concentrations are of great importance. Here, comparative transcriptome changes of K. marxianus exposed to various concentrations of SA were analyzed. Enrichment and analysis of gene clusters revealed repression of the tricarboxylic acid cycle and glyoxylate cycle, also activation of the glycolysis pathway and genes related to ergosterol synthesis. Based on the analyses, potential SA-responsive promoters were investigated, among which the promoter strength of IMTCP2 and KLMA_50231 increased 43.4% and 154.7% in response to 15 g/L SA. In addition, overexpression of the transcription factors Gcr1, Upc2, and Ndt80 significantly increased growth under SA stress. Our results benefit understanding SA toxicity mechanisms and the development of robust yeast for organic acid production. KEY POINTS: • Global gene transcription of K. marxianus is changed by succinic acid (SA) • Promoter activities of IMTCP2 and KLMA_50123 are regulated by SA • Overexpression of Gcr1, Upc2, and Ndt80 enhanced SA tolerance.


Assuntos
Kluyveromyces , Ácido Succínico , Kluyveromyces/genética , Perfilação da Expressão Gênica , Transcriptoma
8.
BMC Plant Biol ; 24(1): 261, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594606

RESUMO

BACKGROUND: Rhubarb is one of common traditional Chinese medicine with a diverse array of therapeutic efficacies. Despite its widespread use, molecular research into rhubarb remains limited, constraining our comprehension of the geoherbalism. RESULTS: We assembled the genome of Rheum palmatum L., one of the source plants of rhubarb, to elucidate its genome evolution and unpack the biosynthetic pathways of its bioactive compounds using a combination of PacBio HiFi, Oxford Nanopore, Illumina, and Hi-C scaffolding approaches. Around 2.8 Gb genome was obtained after assembly with more than 99.9% sequences anchored to 11 pseudochromosomes (scaffold N50 = 259.19 Mb). Transposable elements (TE) with a continuous expansion of long terminal repeat retrotransposons (LTRs) is predominant in genome size, contributing to the genome expansion of R. palmatum. Totally 30,480 genes were predicted to be protein-coding genes with 473 significantly expanded gene families enriched in diverse pathways associated with high-altitude adaptation for this species. Two successive rounds of whole genome duplication event (WGD) shared by Fagopyrum tataricum and R. palmatum were confirmed. We also identified 54 genes involved in anthraquinone biosynthesis and other 97 genes entangled in flavonoid biosynthesis. Notably, RpALS emerged as a compelling candidate gene for the octaketide biosynthesis after the key residual screening. CONCLUSION: Overall, our findings offer not only an enhanced understanding of this remarkable medicinal plant but also pave the way for future innovations in its genetic breeding, molecular design, and functional genomic studies.


Assuntos
Rheum , Rheum/genética , Melhoramento Vegetal , Antraquinonas , Cromossomos , Tamanho do Genoma , Evolução Molecular
9.
Vet Res ; 55(1): 44, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589930

RESUMO

Swine acute diarrhea syndrome coronavirus (SADS-CoV), an emerging Alpha-coronavirus, brings huge economic loss in swine industry. Interferons (IFNs) participate in a frontline antiviral defense mechanism triggering the activation of numerous downstream antiviral genes. Here, we demonstrated that TRIM25 overexpression significantly inhibited SADS-CoV replication, whereas TRIM25 deficiency markedly increased viral yield. We found that SADS-CoV N protein suppressed interferon-beta (IFN-ß) production induced by Sendai virus (SeV) or poly(I:C). Moreover, we determined that SADS-CoV N protein interacted with RIG-I N-terminal two caspase activation and recruitment domains (2CARDs) and TRIM25 coiled-coil dimerization (CCD) domain. The interaction of SADS-CoV N protein with RIG-I and TRIM25 caused TRIM25 multimerization inhibition, the RIG-I-TRIM25 interaction disruption, and consequent the IRF3 and TBK1 phosphorylation impediment. Overexpression of SADS-CoV N protein facilitated the replication of VSV-GFP by suppressing IFN-ß production. Our results demonstrate that SADS-CoV N suppresses the host IFN response, thus highlighting the significant involvement of TRIM25 in regulating antiviral immune defenses.


Assuntos
Alphacoronavirus , Proteínas do Nucleocapsídeo , Animais , Suínos , Alphacoronavirus/metabolismo , Interferons/genética , Proteína DEAD-box 58/metabolismo
10.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602738

RESUMO

Cerebral small vessel disease is the one of the most prevalent causes of vascular cognitive impairment. We aimed to find objective and process-based indicators related to memory function to assist in the detection of memory impairment in patients with cerebral small vessel disease. Thirty-nine cerebral small vessel disease patients and 22 healthy controls were invited to complete neurological examinations, neuropsychological assessments, and eye tracking tasks. Eye tracking indicators were recorded and analyzed in combination with imaging features. The cerebral small vessel disease patients scored lower on traditional memory task and performed worse on eye tracking memory task performance compared to the healthy controls. The cerebral small vessel disease patients exhibited longer visit duration and more visit count within areas of interest and targets and decreased percentage value of total visit duration on target images to total visit duration on areas of interest during decoding stage among all levels. Our results demonstrated the cerebral small vessel disease patients performed worse in memory scale and eye tracking memory task, potentially due to their heightened attentional allocation to nontarget images during the retrieval stage. The eye tracking memory task could provide process-based indicators to be a beneficial complement to memory assessment and new insights into mechanism of memory impairment in cerebral small vessel disease patients.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Disfunção Cognitiva , Humanos , Tecnologia de Rastreamento Ocular , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/etiologia , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Cognição
11.
Nat Commun ; 15(1): 2040, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448429

RESUMO

Metal-organic framework (MOF) glasses are an emerging class of glasses which complement traditional inorganic, organic and metallic counterparts due to their hybrid nature. Although a few zeolitic imidazolate frameworks have been made into glasses, how to melt and quench the largest subclass of MOFs, metal carboxylate frameworks, into glasses remains challenging. Here, we develop a strategy by grafting the zwitterions on the carboxylate ligands and incorporating organic acids in the framework channels to enable the glass formation. The charge delocalization of zwitterion-acid subsystem and the densely filled channels facilitate the coordination bonding mismatch and thus reduce the melting temperature. Following melt-quenching realizes the glass formation of a family of carboxylate MOFs (UiO-67, UiO-68 and DUT-5), which are usually believed to be un-meltable. Our work opens up an avenue for melt-quenching porous molecular solids into glasses.

12.
Plants (Basel) ; 13(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38475470

RESUMO

Plant-plant interactions are a central driver for plant coexistence and community assembly. Chemically mediated plant-plant interactions are represented by allelopathy and allelobiosis. Both allelopathy and allelobiosis are achieved through specialized metabolites (allelochemicals or signaling chemicals) produced and released from neighboring plants. Allelopathy exerts mostly negative effects on the establishment and growth of neighboring plants by allelochemicals, while allelobiosis provides plant neighbor detection and identity recognition mediated by signaling chemicals. Therefore, plants can chemically affect the performance of neighboring plants through the allelopathy and allelobiosis that frequently occur in plant-plant intra-specific and inter-specific interactions. Allelopathy and allelobiosis are two probably inseparable processes that occur together in plant-plant chemical interactions. Here, we comprehensively review allelopathy and allelobiosis in plant-plant interactions, including allelopathy and allelochemicals and their application for sustainable agriculture and forestry, allelobiosis and plant identity recognition, chemically mediated root-soil interactions and plant-soil feedback, and biosynthesis and the molecular mechanisms of allelochemicals and signaling chemicals. Altogether, these efforts provide the recent advancements in the wide field of allelopathy and allelobiosis, and new insights into the chemically mediated plant-plant interactions.

13.
Magn Reson Imaging ; 109: 42-48, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38447629

RESUMO

PURPOSE: To evaluate the performance of high-resolution free-breathing (FB) hepatobiliary phase imaging of the liver using the eXtra-Dimension Golden-angle RAdial Sparse Parallel (XD-GRASP) MRI technique. METHODS: Fifty-eight clinical patients (41 males, mean age = 52.9 ± 12.9) with liver lesions who underwent dynamic contrast-enhanced MRI with a liver-specific contrast agent were prospectively recruited for this study. Both breath-hold volumetric interpolated examination (BH-VIBE) imaging and FB imaging were performed during the hepatobiliary phase. FB images were acquired using a stack-of-stars golden-angle radial sequence and were reconstructed using the XD-GRASP method. Two experienced radiologists blinded to acquisition schemes independently scored the overall image quality, liver edge sharpness, hepatic vessel clarity, conspicuity of lesion, and overall artifact level of each image. The non-parametric paired two-tailed Wilcoxon signed-rank test was used for statistical analysis. RESULTS: Compared to BH-VIBE images, XD-GRASP images received significantly higher scores (P < 0.05) for the liver edge sharpness (4.83 ± 0.45 vs 4.29 ± 0.46), the hepatic vessel clarity (4.64 ± 0.67 vs 4.15 ± 0.56) and the conspicuity of lesion (4.75 ± 0.53 vs 4.31 ± 0.50). There were no significant differences (P > 0.05) between BH-VIBE and XD-GRASP images for the overall image quality (4.61 ± 0.50 vs 4.74 ± 0.47) and the overall artifact level (4.13 ± 0.44 vs 4.05 ± 0.61). CONCLUSION: Compared to conventional BH-VIBE MRI, FB radial acquisition combined with XD-GRASP reconstruction facilitates higher spatial resolution imaging of the liver during the hepatobiliary phase. This enhancement can significantly improve the visualization and evaluation of the liver.


Assuntos
Interpretação de Imagem Assistida por Computador , Respiração , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Interpretação de Imagem Assistida por Computador/métodos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Suspensão da Respiração , Meios de Contraste , Artefatos , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos
14.
Vet Microbiol ; 292: 110036, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458048

RESUMO

Group A Rotavirus (RVA) is a major cause of diarrhea in infants and piglets. ß2-microglobulin (ß2 M), encoded by the B2M gene, serves as a crucial subunit of the major histocompatibility complex class I (MHC-I) molecules. ß2 M is indispensable for the transport of MHC-I to the cell membrane. MHC-I, also known as swine leukocyte antigen class I (SLA-I) in pigs, presents viral antigens to the cell surface. In this study, RVA infection down-regulated ß2 M expression in both porcine intestinal epithelial cells-J2 (IPEC-J2) and MA-104 cells. RVA infection did not down-regulate the mRNA level of the B2M gene, indicating that the down-regulation of ß2 M occurred on the protein level. Mechanismly, RVA infection triggered ß2 M aggregation in the endoplasmic reticulum (ER) and enhanced the Lys48 (K48)-linked ubiquitination of ß2 M, leading to the degradation of ß2 M through ERAD-proteasome pathway. Furthermore, we found that RVA infection significantly impeded the level of SLA-I on the surface, and the overexpression of ß2 M could recover its expression. In this study, our study demonstrated that RVA infection degrades ß2 M via ERAD-proteasome pathway, consequently hampering SLA-I expression on the cell surface. This study would enhance the understanding of the mechanism of how RVA infection induces immune escape.


Assuntos
Infecções por Rotavirus , Doenças dos Suínos , Animais , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo , Membrana Celular , Degradação Associada com o Retículo Endoplasmático , Antígenos de Histocompatibilidade Classe I/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Infecções por Rotavirus/veterinária , Suínos , Doenças dos Suínos/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-38536076

RESUMO

Three yeast strains belonging to the ascomycetous yeast genus Pichia were isolated from two soil samples from Yunnan and Guizhou provinces and a marine water sample from Liaoning province, PR China. Phylogenetic analyses based on the sequences of the D1/D2 domains of the large subunit(LSU) rRNA gene and the internal transcribed spacer (ITS) region indicate that these three strains, together with 12 additional strains isolated from various substrates collected in different regions or countries of the world, represent a novel species of the genus Pichia, for which the name Pichia kurtzmaniana sp. nov. (holotype: strain CGMCC 2.7213) is proposed. The novel species differs from its close relatives Candida californica by eight (1.5 %) and 26 (11.1 %) mismatches in the D1/D2 domains and the ITS region, respectively; and from Pichia chibodasensis by 11 (2.1 %) and 20 (8.7 %) mismatches in the D1/D2 domains and the ITS region, respectively. In addition, eight Candida species which belong to the Pichia clade are transferred to the genus Pichia, resulting in the proposal of the following new combinations: Pichia cabralensis comb. nov., Pichia californica comb. nov., Pichia ethanolica comb. nov., Pichia inconspicua comb. nov., Pichia phayaonensis comb. nov., Pichia pseudolambica comb. nov., Pichia rugopelliculosa comb. nov., and Pichia thaimueangensis comb. nov.


Assuntos
Candida , Pichia , Filogenia , Saccharomyces cerevisiae , China , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Ácidos Graxos/química
16.
Antioxidants (Basel) ; 13(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38539794

RESUMO

The Greatwall-family protein kinase Rim15 is associated with the nutrient starvation response, whereas its role in oxidative stress responses remains unclear. Here, acetic acid and peroxide were used as two oxidative stress elicitors. The antioxidant indicator assay under acetic acid stress revealed the impaired growth in rim15Δ related to the regulation of antioxidant systems. Comparative transcriptome analysis revealed that differentially expressed genes (DEGs) are predicted to be mostly regulated by oxidative stress-responsive transcriptional factor Yap1. Among the DEGs, acetic acid stress-induced genes were found, and YAP1 disruption also inhibited their induction. The deletion of Rim15 or the Rim15 kinase domain in yap1Δ did not further decrease the gene expression, suggesting that Rim15 functions together with Yap1 in regulating acetic acid stress-induced genes, which requires Rim15 kinase activity. Additionally, Rim15 regulated H2O2 stress tolerance through partially similar but special mechanisms in that Rim15 kinase activity impacted acetic acid and H2O2 stress tolerance in different degrees, indicating the different mechanisms underlying Rim15-mediated redox regulation against different stressors. These results benefit the better understanding of stress signaling pathways related to Rim15. Given that Rim15 and some of its target genes are conserved across eukaryotes, these results also provide a basis for studies of oxidative stress-related processes in other organisms.

17.
Turk Gogus Kalp Damar Cerrahisi Derg ; 32(1): 93-96, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38545352

RESUMO

A 30-year-old woman with ankylosing spondylitis was referred to our clinic with abnormal fetal echocardiography findings, including ascending aortic dilatation, giant main pulmonary artery aneurysm, and aortic and pulmonary valve stenosis at 22 weeks of gestation. The full-term male neonate was born by cesarean section and was transferred to the cardiac intensive care unit soon after delivery for respiratory distress with low percutaneous oxygen saturation. Based on cardiovascular and genetic analysis findings, the patient was diagnosed with Marfan syndrome. Surgery was performed; however, the patient died due to cardiac arrest. In conclusion, main pulmonary artery dilatation and aneurysms are uncommon in Marfan syndrome; therefore, presentation with these findings during the fetal life, as in the present case, is likely a sign of severe Marfan syndrome-related cardiac involvement.

19.
Front Microbiol ; 15: 1385137, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550869

RESUMO

Introduction: Porcine circovirus type 2 (PCV2) is the pathogen of Porcine Circovirus Associated Diseases. Porcine circovirus type 3 (PCV3) is a novel porcine circovirus associated with porcine dermatitis and nephropathy syndrome (PDNS) and reproductive failure. PCV2 is clearly pathogenic, while the pathogenicity of PCV3 remains controversial, so it is crucial to monitor the prevalence of PCV2 and PCV3 in healthy and diseased pigs to investigate the effects of PCV3 and PCV2 on the health status of pigs. Methods: Here, we developed a PCV2 and PCV3 dual TaqMan quantitative PCR (qPCR) method to test samples from healthy and diseased pigs, to clarify the differences in the positive rates and viral copy numbers of PCV2 and PCV3, and to analyze the genetic evolution and molecular characterization of the viral genomes obtained with sequence alignment and phylogenetic analysis, homology and structural analysis of Cap proteins, and selection pressure analysis. Results: We successfully established a dual TaqMan qPCR method for PCV2 and PCV3 with good repeatability, specificity and sensitivity. In total, 1,385 samples from 15 Chinese provinces were tested with the established qPCR. The total positive rates were 37.47% for PCV3 and 57.95% for PCV2, and the coinfection rate for was 25.49%. The positive rates of PCV3 and PCV2 in 372 healthy pigs were 15.05 and 69.89%, respectively, and the coinfection rate was 12.90%. The positive rates of PCV3 and PCV2 in 246 diseased pigs were 55.69 and 83.33%, respectively, and the coinfection rate was 47.97%. Eighteen PCV3 genomes and 64 PCV2 genomes were identified, including nine each of the PCV3a-1 and PCV3b genotypes, eight of PCV2a, 16 of PCV2b, and 40 of PCV2d. The amino acid identity within the PCV3 Cap proteins was 94.00-100.0%, whereas the PCV2 Cap proteins showed an identity of 81.30-100.0%. PCV3 Cap was most variable at amino acid sites 24, 27, 77, 104 and 150, whereas PCV2 Cap had 10-13 unique sites of variation between genotypes. Discussion: These results clarify the prevalence and variations of PCV2 and PCV3 in healthy and diseased pigs, which will provide a basis for the prevention and control of the two viral infections.

20.
BMC Cancer ; 24(1): 368, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519974

RESUMO

OBJECTIVE: This study aimed to develop and validate an artificial intelligence radiopathological model using preoperative CT scans and postoperative hematoxylin and eosin (HE) stained slides to predict the pathological staging of gastric cancer (stage I-II and stage III). METHODS: This study included a total of 202 gastric cancer patients with confirmed pathological staging (training cohort: n = 141; validation cohort: n = 61). Pathological histological features were extracted from HE slides, and pathological models were constructed using logistic regression (LR), support vector machine (SVM), and NaiveBayes. The optimal pathological model was selected through receiver operating characteristic (ROC) curve analysis. Machine learnin algorithms were employed to construct radiomic models and radiopathological models using the optimal pathological model. Model performance was evaluated using ROC curve analysis, and clinical utility was estimated using decision curve analysis (DCA). RESULTS: A total of 311 pathological histological features were extracted from the HE images, including 101 Term Frequency-Inverse Document Frequency (TF-IDF) features and 210 deep learning features. A pathological model was constructed using 19 selected pathological features through dimension reduction, with the SVM model demonstrating superior predictive performance (AUC, training cohort: 0.949; validation cohort: 0.777). Radiomic features were constructed using 6 selected features from 1834 radiomic features extracted from CT scans via SVM machine algorithm. Simultaneously, a radiopathomics model was built using 17 non-zero coefficient features obtained through dimension reduction from a total of 2145 features (combining both radiomics and pathomics features). The best discriminative ability was observed in the SVM_radiopathomics model (AUC, training cohort: 0.953; validation cohort: 0.851), and clinical decision curve analysis (DCA) demonstrated excellent clinical utility. CONCLUSION: The radiopathomics model, combining pathological and radiomic features, exhibited superior performance in distinguishing between stage I-II and stage III gastric cancer. This study is based on the prediction of pathological staging using pathological tissue slides from surgical specimens after gastric cancer curative surgery and preoperative CT images, highlighting the feasibility of conducting research on pathological staging using pathological slides and CT images.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico por imagem , Inteligência Artificial , Algoritmos , Amarelo de Eosina-(YS) , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...